

AEP: America's Energy Partner ~

ARBITER 1133A POWER SENTINEL TEST

IEC 687 CERTIFICATION TESTS

DTC LABORATORY TEST REPORT

Report No. CL-212379

Prepared for

Arbiter Systems Inc. 1324 Vendels Circle, Suite 121 Paso Robles, CA 93446

> Prepared by Anthony D. Clarke

AMERICAN ELECTRIC POWER (DOLAN TECHNOLOGY CENTER)

Table of Contents

1.0	General	4
2.0	Purpose	4
3.0	PROCEDURES	5
3.1	Impulse Voltage Insulation Test	5
3.2	A.C. Voltage Insulation Test	5
3.3	EFT/Burst Immunity Test	6
3.4	ESD Immunity Test	6
3.5	Accuracy Requirement Tests	6
4.0	TEST RESULTS	7
4.1	Impulse Voltage Insulation Test	7
4.2	A.C. Voltage Insulation Test	7
4.3	ESD Immunity Test	8
4.4	EFT/Burst Immunity Test	8
4.5	Accuracy Requirement Tests	8
5.0	CONCLUSION	9
APPE	NDIX A SAMPLE TEST WAVEFORMS1	0
APPEN	NDIX B TEST CONFIGURATIONS	1
APPEN	NDIX C ACCURACY REQUIREMENTS TEST REPORT1	4

AEP: America's Energy Partner ∞

DOLAN TECHNOLOGY CENTER

Certificate of Conformance

Client:	Arbiter Systems Inc.
	1324 Vendels Circle, Suite 121
	Paso Robles, CA 93446
Product:	Power Sentinel GPS synchronized power quality/revenue standard
Model No.:	1133A
Test No.:	CL-212379

This certifies that the above device was found to be in conformance with the following specifications:

IEC 687 International Standard for Alternating Current Static Watt-hour Meter for Active Energy (Classes 0.2 S and 0.5 S)

Section 5.4.6.2 Impulse voltage test Section 5.4.6.3 A.C. voltage test Section 5.5.2 Test of immunity to electrostatic discharges Section 5.5.4 Fast transient burst test

Certified by:Anthony D. ClarkeTitle:Sr. Engineering TechnologistDate:September 14, 2001

Tested by: a. D. Clarke

Approved by

American Electric Power • 4001 Bixby Road • Groveport, Ohio 43125 Telephone: (614) 836-4270 • Fax: (614) 836-4268 • Internet: aep.com **American Electric Power Laboratory Test Report**

Client: Arbiter Systems Inc. Tested by: A. D. Clarke Date: 09-17-2001 Approved by:

Dujak

1.0 GENERAL

The single sample device tested in this report is identified in Table 1. Functional performance of the EUT before and after each test was evaluated using the supplied GPS antenna and PSCSV[™] configuration and data retrieval software. The sample unit tested included an optional RS-232 communications port. Other optional communications ports such as Ethernet, RS-485 and modem were not tested.

Table 1.	Description of Equipment Under Test (EUT)
----------	---

Manufacturer	Arbiter Systems Inc.		
Product Name	Power Sentinel - GPS Synchronized Power Quality/Revenue Standard		
	120V, 5A, (RS-232 option)		
Model No.	1133A		
EUT Identification	Sample No.	Serial No.	
EUI Identification	1	0000058	

2.0 PURPOSE

The purpose of this test was to perform certain Electromagnetic Compatibility (EMC), electrical stress and accuracy tests on a single EUT sample for certification to selected IEC 687 requirements. The specific tests listed in Table 2 were to be performed.

Table 2.	Specific Test	Objectives
----------	---------------	------------

Test Description	Product Standard	General Standard
A.C. Voltage Insulation Test	IEC 687	IEC 60-1
Impulse Voltage Insulation Test	IEC 687	IEC 60-1
EFT/Burst EMC Immunity Test	IEC 687	IEC 61000-4-4
Electrostatic Discharge (ESD) EMC Immunity Test	IEC 687	IEC 61000-4-2
Accuracy Requirement Tests	IEC 687	-

3.0 PROCEDURES

3.1 Impulse Voltage Insulation Test

This test was performed in accordance with IEC 687-1992-06/IEC 60-1 (1989). Ten positive and 10 negative impulses with a crest voltage of 6 kV were applied to the EUT. The impulses were applied between all circuits and ground, and between each circuit combination. The test was performed on circuits with a reference voltage greater than 40 V and with the EUT deenergized. The primary test equipment and associated configuration settings are noted in the following table.

Table 3.	Impulse	Voltage Insulation	Test Equipment and	Configuration

Test Equipment		Test Equipment Configurations	
Manufacturer/Description	Model No.	Parameter	Value
Haefely Impulse Tester	PU-12	Voltage	$\pm 6 \mathrm{kV}$
		Impulses	10 pos./10 neg.
		Pulse Period	4s

3.2 A.C. Voltage Insulation Test

This test was performed in accordance with IEC 687-1992-06/IEC 60-1 (1989). A test voltage of 2.0 kV was applied to the EUT for 60 seconds, while monitoring the resulting leakage current. The test was performed on circuits with a reference voltage greater than 40 V and with the EUT deenergized The primary test equipment and associated configuration settings are noted in the following table.

Test Equipment		Test Equipment	Configurations
Manufacturer/Description	Model No.	Parameter	Value
	7530DT	Current Limit	18.00 mA
Associated Research		Final Voltage	2.0 kV
Safety Analyzer		Ramp Rate	100 V/s
Safety Analyzer		Ramp Time	20 s
		Dwell Time	60 s

3.3 EFT/Burst Immunity Test

The EFT/Burst test was performed in accordance with the IEC 687-1992-06/IEC 61000-4-4 (1995-01) test specifications. The ± 2 kV transient voltage was applied to the power supply, voltage/current measurement, relay output and event input circuits of the EUT in common mode only. The IRIG B and RS-232 ports were tested at ± 1 kV using a capacitive coupling clamp. To fulfill the specified differential coupling mode tests between independent circuits, the voltage disturbance was applied to one circuit in common mode with the terminals of the other circuit tied to ground. The primary test equipment and associated configuration settings are noted in the following table.

Table 5.	EFT/Burst	Immunity	Test Equipment	and Configuration
----------	-----------	----------	----------------	-------------------

Test Equipment		Test Equipment	Configurations
Manufacturer/Description	Model No.	Parameter	Value
Keytek EFT/Burst Simulator	ECAT with E411 Module	Voltage	± 2/1 kV
		Burst Frequency	2.5/5 kHz
		Burst Duration	15 ms
		Burst Period	300 ms
		Test Duration	60 s

3.4 ESD Immunity Test

This test was performed in accordance with IEC 687-1992-06/IEC 61000-4-2 (1995-01) using severity class level 4, direct-air mode electrostatic discharges. Ten 15 kV air discharges in each polarity were applied to each EUT target. The EUT was tested with rated measurement and power supply voltages applied, with the current inputs open circuited. The primary test equipment and associated configuration settings are noted in the following table.

Table 6.	ESD Test Equi	pment and	Configuration
----------	---------------	-----------	---------------

Test Equipment		Test Equipment Configurations	
Manufacturer/Description	Model No.	Parameter	Value
Varitali		Voltage	± 15 kV
Keytek Series 2000 ESD Test System	2030	Test Mode	Direct air discharges
		Rate	Single shot

3.5 Accuracy Requirement Tests

The accuracy requirement tests were performed by the AEP Canton Meter Laboratory. The report section for this test is located in Appendix C.

4.0 TEST RESULTS

4.1 Impulse Voltage Insulation Test

Application Point	Application Point Mode/Connection		Results
All input/output terminals to ground	Common (L/V/I/R/C) – (G)	±6	Pass
Power supply input	Differential (L1) – (L2/G)	± 6	Pass
Voltage input	Differential (V1) – (G/N/V2/V3) (V2) – (G/N/V1/V3) (V3) – (G/N/V1/V2)	± 6	Pass
Current Input	Differential (I1+) - (G/I2/I3) (I2+) - (G/I1/I3) (I3+) - (G/I1/I2) Note: (Ix-) open circuited	± 6	Pass
Contact Outputs	Differential (R1a) – ($G/R1c/R2/R3/R4$) ($R2a$) – ($G/R2c/R1/R3/R4$)		Pass
Event Inputs	Differential (C1+) - (G/C1-/C2/C3/C4) (C2+) - (G/C2-/C1/C3/C4) (C3+) - (G/C3-/C1/C2/C4) (C4+) - (G/C4-/C1/C2/C3)	± 6	Pass

 Table 7. Impulse Voltage Insulation Test Results Summary

4.2 A.C. Voltage Insulation Test

Table 8. A.C. Voltage Insulation Test Results Summary

Application Point	Final Voltage (kV)	Leakage Current	Results
All input/output terminals to ground	2.0	17.3 mA	Pass
Power supply input to Voltage inputs	2.0	5.6 mA	Pass
Power supply input to Current inputs	2.0	3.2 mA	Pass
Power supply input to Contact outputs	2.0	0.027 mA	Pass
Power supply input to Event inputs	2.0	2.8 mA	Pass
Voltage inputs to Current inputs	2.0	3.5 mA	Pass
Voltage inputs to Contact outputs	2.0	0.027 mA	Pass
Voltage inputs to Event inputs	2.0	3.1 mA	Pass
Current inputs to Contact outputs	2.0	0.027 mA	Pass
Current inputs to Event inputs	2.0	2.1 mA	Pass
Contact outputs to Event inputs	2.0	0.030 mA	Pas s

1

4.3 ESD Immunity Test

Application Point	Discharge Mode	Voltage (kV)	Results
EUT front panel (LCD area)	Air	± 15	Pass
EUT front panel (Keypad/LED area)	Air	± 15	Pass
EUT front panel (Left area)	Air	± 15	Pass
EUT front panel (Right area)	Air	± 15	Pass
EUT left side area	Contact	± 15	Pass
EUT right side area	Contact	± 15	Pass
EUT top side area	Contact	± 15	Pass

Table 9. ESD Test Results Summary

4.4 EFT/Burst Immunity Test

г

pplication Point	Common Mode Connection	Voltage (kV)
wer supply input	(L1/L2) - (G)	± 2.0

 Table 10.
 EFT/Burst Test Results Summary

Application Point	Common Mode Connection	Voltage (kV)	Results
Power supply input	(L1/L2) – (G)	± 2.0	Pass
Voltage inputs	(V1/V2/V3/N) – (G)	± 2.0	Pass
Current inputs	(I1+/I2+/I3+/N) - (G)	± 2.0	Pass
Contact outputs	(R1/R2/R3/R4) – (G)	± 2.0	Pass
Event inputs	(C1/C2/C3/C4) – (G)	± 2.0	Pass
IRIG B output	Cable clamp	± 1.0	Pass
RS-232 port	Cable clamp	± 1.0	Pass
Power supply input to Voltage inputs	(L1/L2) - (V1/V2/V3/N/G)	± 2.0	Pass
Power supply input to Current inputs	(L1/L2) – (I1/I2/I3/G)	± 2.0	Pass
Power supply input to Contact outputs	(L1/L2) - (R1/R2/R3/R4/G)	± 2.0	Pass
Power supply input to Event inputs	(L1/L2) - (C1/C2/C3/C4/G)	± 2.0	Pass
Voltage inputs to Current inputs	(V1/V2/V3/N) – (I1/I2/I3/G)	± 2.0	Pass
Voltage inputs to Contact outputs	(V1/V2/V3/N) - (R1/R2/R3/R4/G)	± 2.0	Pass
Voltage inputs to Event inputs	(V1/V2/V3/N) - (C1/C2/C3/C4/G)	± 2.0	Pass
Current inputs to Contact outputs	(I1+/I2+/I3+/N) - (R1/R2/R3/R4/G)	± 2.0	Pass
Current inputs to Event inputs	(I1+/I2+/I3+/N) - (C1/C2/C3/C4/G)	± 2.0	Pass
Contact outputs to Event inputs	(R1/R2/R3/R4) - (C1/C2/C3/C4/G)	± 2.0	Pass

4.5 Accuracy Requirement Tests

Refer to Appendix C for test results and data pertaining to the accuracy requirement tests.

5.0 CONCLUSION

The Arbiter 1133A Power Sentinel withstood the applied EMC and electrical stress tests without incidents. The device was found to be in compliance with the selected electrical and accuracy requirements specified in IEC 687.

APPENDIX A SAMPLE TEST WAVEFORMS

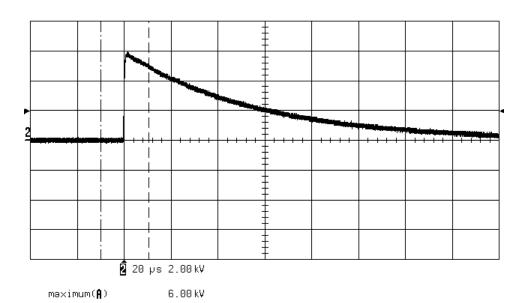
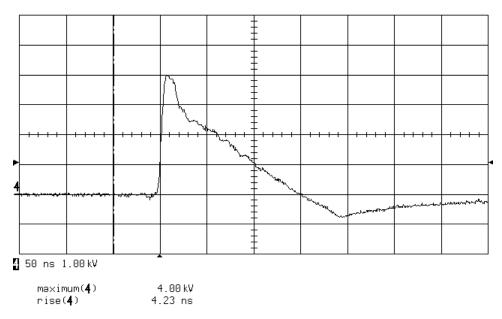
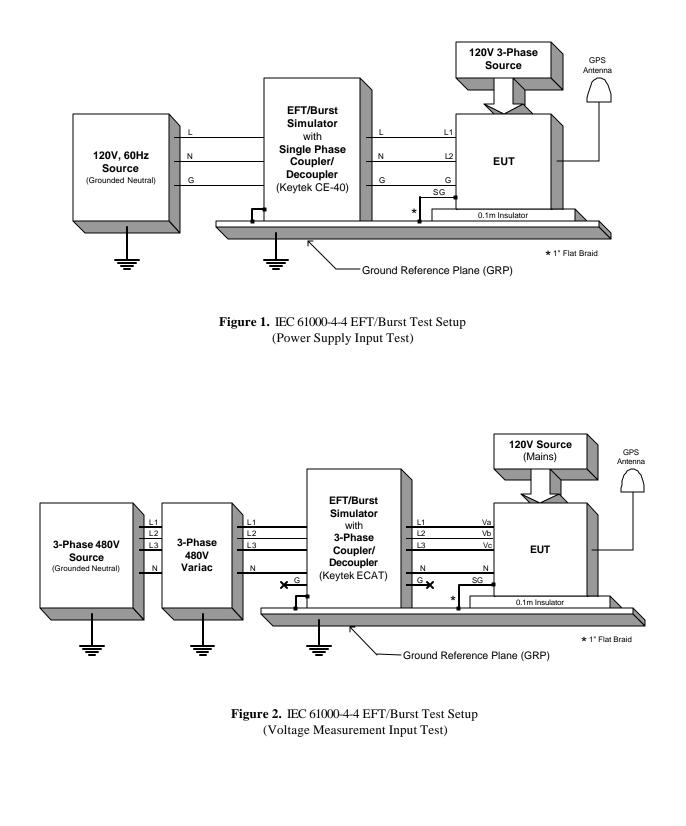




FIGURE 1. IEC 60-1 IMPULSE VOLTAGE WAVEFORM

APPENDIX B TEST CONFIGURATIONS

APPENDIX B TEST CONFIGURATIONS

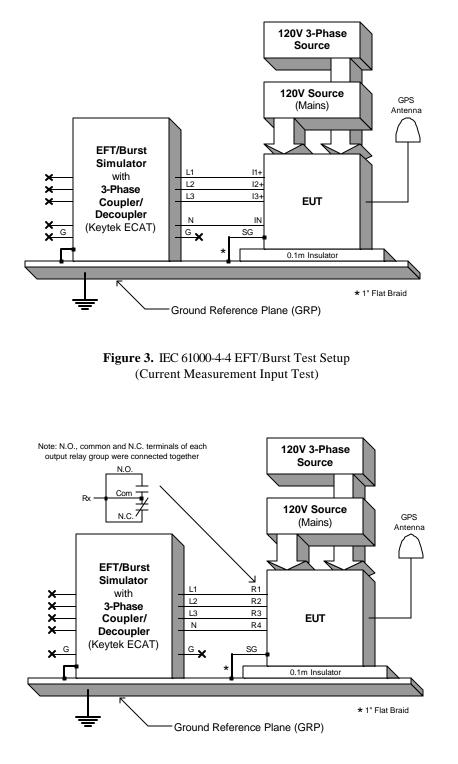


Figure 4. IEC 61000-4-4 EFT/Burst Test Setup (Relay Contact Output Test)

APPENDIX B TEST CONFIGURATIONS

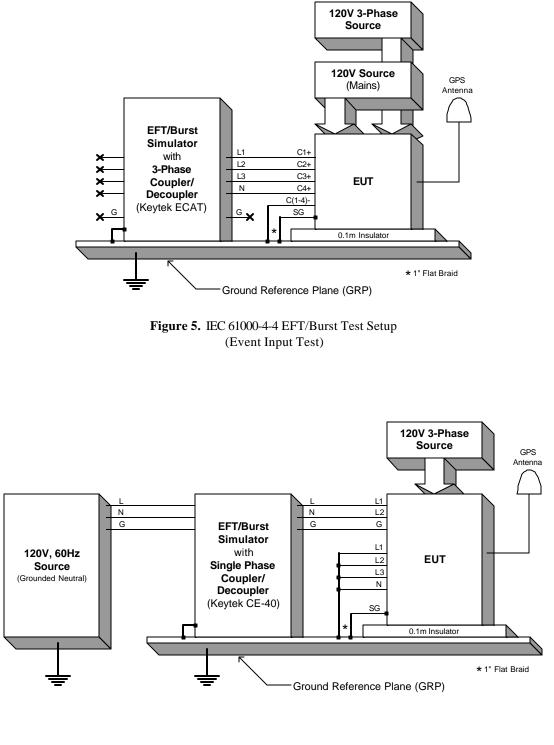


Figure 6. Sample Independent Circuit IEC 61000-4-4 EFT/Burst Test Setup (Between Power Supply and Voltage Input Test)

APPENDIX C ACCURACY REQUIREMENTS TEST REPORT

(See following attachment)

AEP: America's Energy Partner ®

Canton Meter Lab

5300 Navarre Rd. S.W. Canton, Ohio 44706 Voice: 330-580-5131 Fax: 330-580-5095

AMERICAN ELECTRIC POWER Canton Meter Lab

Test Report for Arbiter Systems, Inc.

Test No. ABD 03765 Report by: T.V. Schrader Date: October 11, 2001

Approved by: Jack Carr / Director of Meter Operations

SUBJECT: Performance Test of Arbiter Systems, Inc. Model 1133A Power Sentinel

PURPOSE: To determine the performance of the Arbiter Model 1133A Power Sentinel with respect to the requirements of IEC 687, Second edition 1992-06, the International Standard for Alternating Current Static Watt-hour Meters for Active Energy (class 0.2 S).

The manufacturer provided one sample meter for test. This unit is identified as Serial Number 0000058.

The selected input configuration of this meter for most tests was three phase, three element, 120 Vrms, 5 Arms.

The manufacturer requested that these tests be performed:

4.6 Accuracy requirements

4.6.1 Limits of error due to variation of the current

4.6.2 Limits of error due to other influence quantities (voltage variation, frequency variation,

waveform, phase sequence, voltage unbalance)*

4.6.3 Limits of error due to ambient temperature variation

4.6.4 Starting and running with no-load

*With the exception of electromagnetic HF fields

CONCLUSIONS: The performance of this meter was within the requirements of IEC 687 on all tests performed with one exception:

4.6.4.1 Initial startup of the meter specifies that, "the meter shall be functional within five seconds after the rated voltage is applied to the meter terminals". It appears to take slightly longer (approximately six seconds) before the 1133A startup routine is completed.

TEST PROCEDURE: The meter was tested in accordance with the requirements of IEC 687, Second edition 1992-06, the International Standard for Alternating Current Static Watt-hour Meters for Active Energy (Class 0.2 S).

These meter quantities were used for most tests:

The reference voltage (Un) = 120 volts.

The rated current (In) = 5.0 amps.

The maximum current $(Imax) = 5.9 \text{ amps}^*$

* Note that the maximum rated current when the 5 amp range is selected is 5.9 Arms. Imax cannot be specified as 5.9 amps for all tests because the Waveform influence quantity adds 10% third harmonic to the fundamental, causing an over range condition. For testing of the Waveform influence quantity the meter input configuration was changed to 10 Arms, with In = 5.0 amps, and Imax = 10.0 amps.

Unless otherwise noted in the test results:

Polyphase loading was employed. This load was provided from an RFL 5800 Meter Calibration System. The common voltage input was connected to earth ground.

The meter was mounted in a Tenney Environmental Model No. T20S-1.5 chamber. The temperature in the chamber was maintained at 23C throughout the test.

The meter power supply was energized at 120 VAC, 60 Hz at all times.

The meter was synchronized via GPS satellite at all times during testing.

The meter was tested against Radian Research, Inc. Metronic Watthour Standards. The accuracy of these standards was verified by comparison with a Radian Research, Inc. Model RM-11-07 Metronic Primary Watthour Standard. A copy of the latest certificate of calibration for this standard is attached to this report.

The meter Revenue Log was programmed to record Watthours Delivered and Watthours Received at one-minute intervals. An Arbiter Systems, Inc. Model 1084B Satellite-Controlled Clock was used to provide synchronized pulses at the rate of one per second to the Standard Input of a Radian RM-109 Digital Watthour Comparator. The RM output of the RM-109 was connected to the Reset input of each Radian Standard. In order to provide a test length of two minutes the RM-109 Comparator was set to 120 pulses. To initiate a test run the RM-109 Start button was pressed just after 59 seconds after the minute was displayed on the 1084B clock. This caused the Radian Standards to begin running at the next pulse from the 1084B clock. At the end of each test run the Radian Standard readings were recorded, then later compared with the values recorded in the 1133A revenue log for those two minutes. At least two, two-minute tests were run at each test point.

The 1133A was programmed and read with via the RS-232 serial port with Arbiter Systems Power Sentinel CSV software, version 0.9.0.3.

TEST RESULTS: <u>4.6.1 Limits of error due to variation of the current</u>

Table 9 - Balanced loads at reference conditionsA. 1.0 Power Factor

A	Percent Accuracy				
Amps	Delivered	Received			
0.05	99.80	99.79			
0.10	99.91	99.91			
0.15	99.94	99.95			
0.25	99.97	99.96			
0.50	99.99	99.98			
1.00	99.99	99.99			
1.50	100.00	99.99			
2.00	100.00	99.99			
2.50	100.00	99.99			
3.00	100.00	99.99			
3.50	100.00	99.99			
4.00	100.00	99.99			
4.50	100.00	99.99			
5.00	100.00	99.99			
5.50	100.00	99.99			
5.90	99.98	99.97			

B. 0.5 Lag Power Factor

Amna	Percent Accuracy			
Amps	Delivered	Received		
0.10	99.95	99.94		
0.25	99.99	99.99		
0.50	100.01	100.01		
1.00	100.01	100.01		
2.00	100.01	100.01		
3.00	100.01	100.01		
4.00	100.01	100.01		
5.00	100.01	100.01		
5.90	99.99	99.99		

C. 0.8 Lead Power Factor

Amag	Percent Accuracy			
Amps	Delivered	Received		
0.10	99.89	99.89		
0.25	99.96	99.95		
0.50	99.98	99.97		
1.00	99.98	99.98		
2.00	99.99	99.98		
3.00	99.99	99.98		
4.00	99.99	99.98		
5.00	99.99	99.98		
5.90	99.97	99.96		

Table 10 - Single-phase loads at reference conditions 1 0 Decrementary Exception

A. 1.0 Power Factor

			Percent A	Percent Accuracy			
Amps	Delivered			Received			
	Element A	Element B	Element C	Element A	Element B	Element C	
0.25	99.97	99.96	99.96	99.96	99.96	99.97	
0.50	99.98	99.98	99.99	99.97	99.98	99.99	
1.00	99.99	99.99	99.99	99.99	99.98	99.99	
3.00	100.00	99.99	99.99	99.99	99.99	99.99	
5.00	99.99	99.99	99.99	99.99	99.99	99.99	
5.90	99.98	99.98	99.97	99.98	99.97	99.97	

B. 0.5 Lag Power Factor

Percent Accuracy						
Amps	Delivered			Received		
	Element A	Element B	Element C	Element A	Element B	Element C
0.50	100.02	100.00	100.00	100.00	100.00	100.01
1.00	100.01	100.00	100.01	100.00	100.00	100.01
3.00	100.01	100.00	100.02	100.01	100.01	100.02
5.00	100.01	100.01	100.01	100.01	100.00	100.01
5.90	100.00	99.98	100.00	100.00	99.98	99.99

IEC 687 states that, "The difference between the percentage error when the meter is carrying a single-phase load and a balanced polyphase load at rated current and unity power factor, shall not exceed 0.4 % for meters of class 0.2 S".

The maximum obtained deviation was 0.01 %.

4.6.2 Limits of error due to other influence quantities (voltage variation, frequency variation,

waveform, phase sequence, voltage unbalance)

Table 11 - Influence quantities

A. Measuring circuit voltage +15% to -20%

1. Reference Performance

Volts	Amps	Power Factor	Percentage Error
120.0	0.25	1.0	-0.03
120.0	0.50	1.0	-0.01
120.0	1.00	1.0	-0.01
120.0	2.00	1.0	0.00
120.0	3.00	1.0	0.00
120.0	4.00	1.0	0.00
120.0	5.00	1.0	-0.01
120.0	5.90	1.0	-0.02
120.0	0.50	0.5 Lagging	0.01
120.0	1.00	0.5 Lagging	0.01
120.0	2.00	0.5 Lagging	0.02
120.0	3.00	0.5 Lagging	0.02
120.0	4.00	0.5 Lagging	0.02
120.0	5.00	0.5 Lagging	0.01
120.0	5.90	0.5 Lagging	-0.01

2. Variation of Influence Quantity - Reference Voltage minus 20%

				ge Error from Reference
Volts	Amps	Power Factor	Perfe	ormance
			Allowable	Obtained
96.0	0.25	1.0	+/- 0.3	0.00
96.0	0.50	1.0	+/- 0.3	0.00
96.0	1.00	1.0	+/- 0.3	0.00
96.0	2.00	1.0	+/- 0.3	0.00
96.0	3.00	1.0	+/- 0.3	0.00
96.0	4.00	1.0	+/- 0.3	0.00
96.0	5.00	1.0	+/- 0.3	0.00
96.0	5.90	1.0	+/- 0.3	0.00
96.0	0.50	0.5 Lagging	+/- 0.6	0.00
96.0	1.00	0.5 Lagging	+/- 0.6	0.00
96.0	2.00	0.5 Lagging	+/- 0.6	0.00
96.0	3.00	0.5 Lagging	+/- 0.6	0.00
96.0	4.00	0.5 Lagging	+/- 0.6	0.00
96.0	5.00	0.5 Lagging	+/- 0.6	0.00
96.0	5.90	0.5 Lagging	+/- 0.6	0.00

Volts	Amps Power Factor					n in Percentage Error from Reference Performance	
	1		Allowable	Obtained			
96.0	0.25	1.0	+/- 0.3	0.00			
96.0	0.50	1.0	+/- 0.3	0.00			
96.0	1.00	1.0	+/- 0.3	0.00			
96.0	2.00	1.0	+/- 0.3	0.00			
96.0	3.00	1.0	+/- 0.3	0.00			
96.0	4.00	1.0	+/- 0.3	0.00			
96.0	5.00	1.0	+/- 0.3	0.00			
96.0	5.90	1.0	+/- 0.3	0.00			
96.0	0.50	0.5 Lagging	+/- 0.6	0.00			
96.0	1.00	0.5 Lagging	+/- 0.6	0.00			
96.0	2.00	0.5 Lagging	+/- 0.6	0.00			
96.0	3.00	0.5 Lagging	+/- 0.6	0.00			
96.0	4.00	0.5 Lagging	+/- 0.6	0.00			
96.0	5.00	0.5 Lagging	+/- 0.6	0.00			
96.0	5.90	0.5 Lagging	+/- 0.6	0.00			

3. Variation of Influence Quantity - Reference Voltage plus 15%

B. Frequency Variation +/- 5% 1. Reference Performance

Frequency (Hz)	Amps	Power Factor	Percentage Error
60.0	0.25	1.0	-0.03
60.0	0.50	1.0	-0.01
60.0	1.00	1.0	-0.01
60.0	2.00	1.0	0.00
60.0	3.00	1.0	0.00
60.0	4.00	1.0	0.00
60.0	5.00	1.0	-0.01
60.0	5.90	1.0	-0.02
60.0	0.50	0.5 Lagging	0.01
60.0	1.00	0.5 Lagging	0.01
60.0	2.00	0.5 Lagging	0.02
60.0	3.00	0.5 Lagging	0.02
60.0	4.00	0.5 Lagging	0.02
60.0	5.00	0.5 Lagging	0.01
60.0	5.90	0.5 Lagging	-0.01

2. Variation of Influence Quantity - Reference Frequency minus 5%

Frequency (Hz)	Amps Power Factor		sPower FactorVariation in Percentage Error from RefePower FactorPerformance	
(112)			Allowable	Obtained
57.0	0.25	1.0	+/- 0.1	0.00
57.0	0.50	1.0	+/- 0.1	0.00
57.0	1.00	1.0	+/- 0.1	0.00
57.0	2.00	1.0	+/- 0.1	0.00
57.0	3.00	1.0	+/- 0.1	0.00
57.0	4.00	1.0	+/- 0.1	0.00
57.0	5.00	1.0	+/- 0.1	0.00
57.0	5.90	1.0	+/- 0.1	0.00
57.0	0.50	0.5 Lagging	+/- 0.1	0.00
57.0	1.00	0.5 Lagging	+/- 0.1	0.00
57.0	2.00	0.5 Lagging	+/- 0.1	0.00
57.0	3.00	0.5 Lagging	+/- 0.1	0.00
57.0	4.00	0.5 Lagging	+/- 0.1	0.00
57.0	5.00	0.5 Lagging	+/- 0.1	0.00
57.0	5.90	0.5 Lagging	+/- 0.1	0.00

Frequency	Amps	Power Factor	Variation in Percentage Error from Reference Performance	
(Hz)			Allowable	Obtained
63.0	0.25	1.0	+/- 0.1	0.00
63.0	0.50	1.0	+/- 0.1	0.00
63.0	1.00	1.0	+/- 0.1	0.00
63.0	2.00	1.0	+/- 0.1	0.00
63.0	3.00	1.0	+/- 0.1	0.00
63.0	4.00	1.0	+/- 0.1	0.00
63.0	5.00	1.0	+/- 0.1	0.00
63.0	5.90	1.0	+/- 0.1	0.00
63.0	0.50	0.5 Lagging	+/- 0.1	0.00
63.0	1.00	0.5 Lagging	+/- 0.1	0.00
63.0	2.00	0.5 Lagging	+/- 0.1	0.00
63.0	3.00	0.5 Lagging	+/- 0.1	0.00
63.0	4.00	0.5 Lagging	+/- 0.1	0.00
63.0	5.00	0.5 Lagging	+/- 0.1	0.00
63.0	5.90	0.5 Lagging	+/- 0.1	0.00

3. Variation of Influence Quantity - Reference Frequency +5%

C. Waveform: 10% of third harmonic in the current

For this test the meter voltage circuits were connected in parallel and the current circuits in series. The test voltage and current was then provided by the "A" phase of the RFL 5800 Meter Calibration System. The meter input configuration was changed to 10 Arms.

Amps	Power Factor	Percentage Error
0.25	1.0	-0.06
0.50	1.0	-0.04
1.00	1.0	-0.01
2.00	1.0	-0.01
3.00	1.0	0.00
4.00	1.0	0.00
5.00	1.0	0.00
6.00	1.0	0.00
7.00	1.0	0.00
8.00	1.0	-0.01
9.00	1.0	0.00
10.00	1.0	-0.01

1. Reference Performance

2. Variation of Influence Quantity - 10% of Third Harmonic in Phase with the Fundamental

Amps	Power Factor	Variation in Percentage Error from Reference Performance	
1		Allowable	Obtained
0.25	1.0	+/- 0.1	-0.02
0.50	1.0	+/- 0.1	-0.01
1.00	1.0	+/- 0.1	0.00
2.00	1.0	+/- 0.1	0.00
3.00	1.0	+/- 0.1	0.00
4.00	1.0	+/- 0.1	0.00
5.00	1.0	+/- 0.1	0.00
6.00	1.0	+/- 0.1	0.00
7.00	1.0	+/- 0.1	0.00
8.00	1.0	+/- 0.1	0.00
9.00	1.0	+/- 0.1	0.00
10.00	1.0	+/- 0.1	0.00

		Variation in Percentag	ge Error from Reference
Amps	Power Factor	Performance	
		Allowable	Obtained
0.25	1.0	+/- 0.1	-0.02
0.50	1.0	+/- 0.1	0.01
1.00	1.0	+/- 0.1	0.00
2.00	1.0	+/- 0.1	0.00
3.00	1.0	+/- 0.1	0.00
4.00	1.0	+/- 0.1	0.00
5.00	1.0	+/- 0.1	0.00
6.00	1.0	+/- 0.1	0.00
7.00	1.0	+/- 0.1	0.00
8.00	1.0	+/- 0.1	0.00
9.00	1.0	+/- 0.1	0.00
10.00	1.0	+/- 0.1	0.00

3. Variation of Influence Quantity - 10% of Third Harmonic in Antiphase with the Fundamental

D. Reversed phase sequence

1. Reference Performance - Phase Sequence ABC

Amps	Power Factor	Percentage Error
0.50	1.0	-0.01

2. Variation of Influence Quantity - Phase Sequence CBA

		Variation in Percentage Error from Reference	
Amps	Power Factor	Per	formance
		Allowable	Obtained
0.50	1.0	+/- 0.05	0.00

E. Voltage unbalance

1. Reference Performance - All Phases Energized - Balanced Load

Amps	Power Factor	Percentage Error
5.00	1.0	0.00

2. Variation of Influence Quantity - One or Two Phases Interrupted

Amps	Power	Energized Phase(s)	Variation in Percentage Error from Reference Performance	
Factor			Allowable	Obtained
5.00	1.0	AB	+/- 0.5	0.00
5.00	1.0	AC	+/- 0.5	0.00
5.00	1.0	BC	+/- 0.5	0.00
5.00	1.0	А	+/- 0.5	0.00
5.00	1.0	В	+/- 0.5	0.00
5.00	1.0	C	+/- 0.5	0.00

F. Auxiliary voltage +/- 15%

For this test the meter voltage circuits were connected in parallel and the current circuits in series. The load for this test was supplied from a Rotek 800A Precision Calibrator/ 880B High Current Amplifier. The auxiliary voltage was supplied from a Superior Electric Co. Powerstat variable autotransformer connected to Phase 1-N of a 3-phase, 4-wire source. The Rotek output was synched to Phase 1-N.

1. Reference Performance

Amps	Power Factor	Auxiliary Voltage	Percentage Error
0.05	1.0	120.0	-0.25

2. Variation of mindence Quantity Maximary Voltage (7 157)							
Amps	Power Factor	Auxiliary Voltage	Variation in Percentage Error from Reference Performance				
			Allowable	Obtained			
0.05	1.0	102.0	+/- 0.05	0.05			
0.05	1.0	138.0	+/- 0.05	0.02			

2. Variation of Influence Quantity - Auxiliary Voltage +/- 15%

G. Phase of auxiliary supply voltage changed by +/- 120 degrees.

For this test the meter voltage circuits were connected in parallel and the current circuits in series. The load for this test was supplied from a Rotek 800A Precision Calibrator/ 880B High Current Amplifier. The Rotek output was synched to the line. A States Co. Catalog No. PR2-33603 phase shifter was used to adjust the relationship between the load voltage and current and the auxiliary supply voltage.

1. Reference Performance

Amps	Power Factor	Auxiliary Voltage	Percentage Error
0.05	1.0	In Phase with Load	-0.23

2. Variation of Influence Quantity - Phase of Auxiliary Voltage +/- 120 degrees

Amps	Power	Auxiliary Voltage	0	e Error from Reference
-	Factor		Allowable	Obtained
0.05	1.0	Leads by 120 Degrees	+/- 0.1	0.00
0.05	1.0	Leads by 240 Degrees	+/- 0.1	0.04

H. Continuous magnetic induction of external origin

5.6.2 Test of influence quantities states "this magnetic field shall be applied to all accessible surfaces of the meter when it is mounted as for normal use".

The specified electromagnet was placed at fifteen evenly spaced points on the top (five rows from side to side, three rows from front to back); three evenly spaced points on each side; five evenly spaced points on the front; and fifteen evenly spaced points on the bottom of the 1133A. This provided a total of 41 test points.

Amps Power Factor		Percentage Error			
5.00	1.0	-0.01			

1. Reference Performance - No External Field

2.	Variation	of Influence	Ouantity -	External Magnetic Field

Amps		Electromagnet Position	Variation in Percentage Error from Reference Performance	
-	Factor		Allowable	Maximum Obtained
5.00	1.0	Any	+/- 2.0	-0.01

I. Magnetic induction of external origin 0.5 mT

Table 11 states that a magnetic induction of external origin of 0.5 mT should be applied to the meter "under the most unfavourable conditions of phase and direction".

For this test the meter was placed in the center of the external coil. The meter was positioned parallel to the plane of the field, and then tested with the phase angle of the load with respect to the current in the external field coil adjusted every 30 degrees from zero to 330.

The meter was then repositioned so that it was perpendicular to the plane of the field and all test points were repeated.

For this test the meter voltage circuits were connected in parallel and the current circuits in series. A States Co. Catalog No. PR2-33603 phase shifter was used to adjust the relationship between the load voltage and current and the external field current. The test voltage was then provided from a Superior Electric Co. Powerstat variable autotransformer, and the test current from a Tesco RC-50A load box. The strength of the external field was verified with a Magnetic Sciences International Model 20/25 Magnetic Field Meter.

Amps	Power Factor	Percentage Error				
5.00	1.0	0.02				

1. Reference Performance - No External Field

2. Variation of Influence Quantity - External Magnetic Field

Amps	Power	Phase Angle Between Load and Ext. Field		ercentage Error from ce Performance
-	Factor	(Degrees)	Allowable	Obtained
5.00	1.0	0.0	+/- 0.5	-0.02
5.00	1.0	30.0	+/- 0.5	-0.02
5.00	1.0	60.0	+/- 0.5	-0.01
5.00	1.0	90.0	+/- 0.5	0.00
5.00	1.0	120.0	+/- 0.5	0.01
5.00	1.0	150.0	+/- 0.5	0.02
5.00	1.0	180.0	+/- 0.5	0.02
5.00	1.0	210.0	+/- 0.5	0.02
5.00	1.0	240.0	+/- 0.5	0.01
5.00	1.0	270.0	+/- 0.5	0.00
5.00	1.0	300.0	+/- 0.5	-0.01
5.00	1.0	330.0	+/- 0.5	-0.02

a. Meter **perpendicular** to external field

b. Meter **parallel** to external field

	Power	Phase Angle Between	Variation in Percentage Error from		
Amps	Factor	Load and Ext. Field	Reference	e Performance	
	Pactor	(Degrees)	Allowable	Obtained	
5.00	1.0	0.0	+/- 0.5	0.01	
5.00	1.0	30.0	+/- 0.5	0.00	
5.00	1.0	60.0	+/- 0.5	0.00	
5.00	1.0	90.0	+/- 0.5	0.00	
5.00	1.0	120.0	+/- 0.5	0.00	
5.00	1.0	150.0	+/- 0.5	0.00	
5.00	1.0	180.0	+/- 0.5	-0.01	
5.00	1.0	210.0	+/- 0.5	0.00	
5.00	1.0	240.0	+/- 0.5	0.00	
5.00	1.0	270.0	+/- 0.5	0.00	
5.00	1.0	300.0	+/- 0.5	0.01	
5.00	1.0	330.0	+/- 0.5	0.01	

J. Electromagnetic HF fields.

This test was not performed.

K. Magnetic field of an accessory.

This influence quantity is not applicable to this meter.

4.6.3 Limits of error due to ambient temperature variation

Table 12 Temperature coefficient

The Standard states that "the determination of the mean temperature coefficient for a given temperature shall be made over a 20 K temperature range, 10 K above and 10 K below that temperature". The selected temperature for this test was 23 C.

Valta	A	DE		Percentage Error	
Volts Amps	Amps	P.F.	13C	23C	33C
120.0	0.25	1.0	-0.03	-0.04	-0.04
120.0	0.50	1.0	-0.01	-0.02	-0.02
120.0	1.00	1.0	-0.01	-0.01	-0.01
120.0	2.00	1.0	0.00	-0.01	-0.01
120.0	3.00	1.0	0.00	0.00	-0.01
120.0	4.00	1.0	0.00	-0.01	-0.01
120.0	5.00	1.0	-0.01	-0.01	-0.01
120.0	5.90	1.0	-0.02	-0.02	-0.03
120.0	0.50	0.5 Lag	0.01	0.01	0.00
120.0	1.00	0.5 Lag	0.01	0.01	0.01
120.0	2.00	0.5 Lag	0.02	0.01	0.01
120.0	3.00	0.5 Lag	0.02	0.01	0.02
120.0	4.00	0.5 Lag	0.01	0.01	0.01
120.0	5.00	0.5 Lag	0.01	0.01	0.01
120.0	5.90	0.5 Lag	0.00	0.00	-0.01

Valta	A	DE	Temperature Coefficient at 23C (%/K)			
Volts	Amps	P.F.	Allowable	Obtained		
120.0	0.25	1.0	0.01	0.001		
120.0	0.50	1.0	0.01	0.000		
120.0	1.00	1.0	0.01	0.000		
120.0	2.00	1.0	0.01	0.000		
120.0	3.00	1.0	0.01	0.000		
120.0	4.00	1.0	0.01	0.000		
120.0	5.00	1.0	0.01	0.000		
120.0	5.90	1.0	0.01	0.000		
120.0	0.50	0.5 Lag	0.02	0.001		
120.0	1.00	0.5 Lag	0.02	0.000		
120.0	2.00	0.5 Lag	0.02	0.000		
120.0	3.00	0.5 Lag	0.02	0.000		
120.0	4.00	0.5 Lag	0.02	0.000		
120.0	5.00	0.5 Lag	0.02	0.000		
120.0	5.90	0.5 Lag	0.02	0.000		

4.6.4 Starting and running with no-load

4.6.4.1 Initial startup of the meter

The Standard states "the meter shall be functional within 5 seconds after the rated voltage is applied to the meter terminals". When auxiliary power was applied to this 1133A, it appeared to take about six seconds before the meter responded to the keypad. After the meter had been synchronized to GPS and auxiliary power was interrupted, it took an average of approximately 13 seconds after the auxiliary power was restored before the UNLOCKED LED was extinguished.

4.6.4.2 Running with no-load

The specifications of this test do not strictly apply to this meter as it has no test pulse output at this time. The Standard says that "the minimum length of the test period shall be 20 times longer than the time between two pulses, when starting load (1.8 watts since In = 5A) is applied to the meter. During this test the test output device of the meter shall not emit more than one pulse".

With the procedure used for these tests, the Standard could be viewed in this manner:

At starting load the Revenue Log of the 1133A would show .9 Wh in thirty minutes. The registration at no load must be less than 1/20 of that value (.045 Wh).

<u>The energy recorded by the 1133A was far less than that value.</u> With open current circuits and the voltage circuits energized at 138 volts, as specified in 5.6.4, some energy was registered in the Revenue Log. The maximum during this test was .006 Watthours Received in thirty minutes, with an average of .005 Wh per thirty minutes over the test period of 15 hours.

4.6.4.3 Starting

The Standard states "the meter shall start and continue to register at .001 In (0.005 amps) and unity power factor. For this test the meter voltage circuits were connected in parallel and the current circuits in series. The load was supplied from a Rotek 800A Precision Calibrator/ 880B High Current Amplifier. At the specified load this meter registered 99.5% with watthours delivered, and 100.1% with watthours received.

4.6.5 Meter Constant

This test does not apply to this meter as it has no test pulse output.

Radian Research, Inc.

Power and Energy Measurement Specialists

Certificate of Calibration

RM-11-07 Metronic	Primary Watthour Standard
Serial Number:	5216
Customer Name:	American Electric Power
P.O. Number:	ED07-00009
Calibration Date:	16-Mar-01

11495

CE Numbers:

RMA Number:

This certifies the above instrument was calibrated in compliance with ISO 9001:1994 and ANSI/NCSL Z540-1-1994 using applicable Radian Research procedures. Radian Research Inc. certifies this instrument meets or exceeds all published specifications. This instrument was calibrated by an RS-703A Syntron Automated Calibration System which is traceable to the National Institute of Standards and Technology. The RS-703A Calibration System is traceable within the limitations of NIST's services, by accuracies derived from accepted values of natural physical constants, or by accuracies derived from accepted ratio type calibration techniques. The RS-703A Calibration System is cross checked and calibrated on a schedule which is adjusted to maintain required accuracies and traceability.

Our As Found Test Results showed your instrument was:

[X] In Tolerance [] Out of Tolerance [] Inoperative [] Limited Calibration For out of tolerance conditions, As found Data Reports are furnished. Radian Research recommends a 12 month Calibration interval for Standards. Calibration due date: 16-Mar-02

Applicable Traceability & Report Numbers for Radian Research Primary References:

Watthour, VA hour; Varhour, Qhour, Milliamp hour

Millivolt hour and Volts-Squared hour;

Timebase;

Hewlett Packard Model 5334B 100 MHz Universal Counter (serial number 2839A02175) Agilent Technologies Cert. No. 2613H252501 Calibration Due Date 29-Jan-02.

Technician Signature

ScottEBlackwell 47

Document Id. 9903054.A

3852 Fortune Drive, Lafayette, IN 47905 USA Tel: 765-447-0535 • Fax: 765-448-4614 Web Site: www.radianresearch.com

Page 1 of 4

Power and Energy Measurement Specialists

Calibration Report

RM-11-07 Metronic Primary Watthour Standard

ModeW	atthour	60 Hertz
Date	16-Mar-01	
Serial Number	5216	

The following data was collected by an RS-703A Syntron Automated Calibration System The RS-703A is calibrated to a bank of three RM-11 Standards certified by the National Institute of Standards and Technology (NIST) to an uncertainty of .004% @ unity, and .005% @ 60° lagging Power Factor. Calibration temperature is 23 degrees Centigrade. Test time is 15 seconds per point with a 5 second stabilization time between points. Timing is done by gating the pulse output. For lagging power factors, current lags voltage. All readings are in percent error. RM-11 watthour accuracy is +/- .025% (worst case). The RS-703A has a (5) times greater accuracy in Watthour.

2	120 Unity	120 60°Lag	240 Unity	240 60°Lag	480 Unity	480 60°Lag	600 Unity	600 60°Lag
Amps	0.000	0.000	0.005	0.005	0.005	0.000	0.004	0.000
0.25	-0.003	-0.003	-0.005	-0.005	-0.005	-0.002	-0.004	0.000
0.5	-0.004	-0.007	-0.007	-0.010	-0.010	-0.006	-0.008	-0.005
1.0	-0.004	-0.004	-0.005	-0.001	-0.005	-0.002	-0.004	0.000
2.0	-0.005	-0.008	-0.008	-0.008	-0.009	-0.008	-0.008	-0.005
2.5	-0.003	-0.009	-0.006	-0.008	-0.008	-0.007	-0.006	-0.003
3.0	-0.003	-0.005	-0.006	-0.003	-0.007	-0.002	-0.004	-0.001
5.0	-0.002	-0.002	-0.003	-0.002	-0.005	0.000	-0.005	0.001
10.0	-0.003	-0.004	-0.006	-0.007	-0.006	-0.005	-0.005	-0.002
12.0	-0.004	-0.005	-0.005	-0.004	-0.005	-0.004	-0.004	0.000
15.0	-0.001	-0.002	-0.005	-0.001	-0.005	0.001	-0.005	0.001
20.0	-0.003	0.000	-0.003	-0.002	-0.005	0.002	-0.005	0.002
25.0	-0.001	-0.003	-0.003	-0.002	-0.004	0.000	-0.004	0.002
30.0	-0.004	-0.012	-0.008	-0.009	-0.008	-0.008	-0.005	-0.005
40.0	-0.004	-0.008	-0.006	-0.005	-0.007	-0.006	-0.005	-0.003
45.0	-0.002	-0.004	-0.005	-0.005	-0.007	-0.002	-0.005	-0.001
50.0	-0.003	-0.003	-0.004	-0.002	-0.003	0.000	-0.004	0.001
Average	-0.003	-0.005	-0.005	-0.005	-0.006	-0.003	-0.005	-0.001
Minimum	-0.005	-0.012	-0.008	-0.010	-0.010	-0.008	-0.008	-0.005
Maximum	-0.001	0.000	-0.003	-0.001	-0.003	0.002	-0.004	0.002

Voltage	&	Phase	Angle
---------	---	-------	-------

Overall	Unity	60°Lag		
Average	-0.005	-0.003		
Minimum	-0.010	-0.012		
Maximum	-0.001	0.002		

Document Id. 9903054.A

3852 Fortune Drive, Lafayette, IN 47905 USA Tel: 765-447-0535 • Fax: 765-448-4614 Web Site: www.radianresearch.com

Radian Research, Inc.

Power and Energy Measurement Specialists

Calibration Report

RM-11-07 Metronic Primary Watthour Standard

ModeVa	arhour	60 Hertz
Date	16-Mar-01	
Serial Number	5216	

The following data was collected by an RS703A Syntron Automated Calibration System. The RS-703A Varhour Calibration is derived directly from the (NIST) Watthour Calibration by the use of ultra low distortion synthesis and digital delay. Uncertainty is .005% for Varhour. Calibration temperature is 23 degrees Centigrade. Test time is 15 seconds per point with a 5 second stabilization time between points. Timing is done by gating the pulse output. For for lagging power factors, current lags voltage. All readings are in percent error. RM-11 Varhour accuracy is +/- .05% (worst case). The RS-703A has a (10) times greater accuracy in Varhour.

			Voltage	& Phase	Angle			
Amps	120 90°Lag	120 30°Lag	240 90°Lag	240 30°Lag	480 90°Lag	480 30°Lag	600 90°Lag	600 30°Lag
0.25	0.010	0.011	0.003	0.005	0.002	0.004	0.005	0.007
0.5	0.008	0.002	0.002	0.000	0.001	-0.006	0.000	-0.001
1.0	0.009	0.008	0.003	0.003	0.003	0.003	0.001	0.003
2.0	0.005	0.001	0.002	-0.004	-0.001	-0.007	-0.001	-0.004
2.5	0.004	0.005	0.002	0.003	0.000	-0.003	0.001	0.001
3.0	0.006	0.005	0.001	0.003	0.000	-0.001	0.000	-0.001
5.0	0.007	0.010	0.002	0.005	0.003	0.003	0.004	0.005
10.0	0.004	0.002	0.001	0.000	-0.001	-0.002	0.001	-0.002

0.002

0.001

0.002

0.002

-0.002

-0.003

-0.002

-0.001

0.001

-0.003

0.003

Voltage & Phase Angle

-0.003

0.000

0.000

0.001

-0.010

-0.009

-0.010

-0.008

-0.002

-0.010

0.005

0.002

0.002

0.001

0.002

-0.002

-0.003

-0.002

-0.002

0.000

-0.003

0.003

-0.002

-0.001

0.000

0.001

-0.008

-0.009

-0.007

-0.007

-0.003

-0.009

0.004

0.002

0.002

0.002

0.003

-0.002

-0.002

-0.002

-0.001

0.001

-0.002

0.005

-0.001

0.000

0.001

0.001

-0.007

-0.006

-0.005

-0.005

-0.001

-0.007

0.007

Overall	90°Lag	30°Lag
Average	0.001	-0.001
Minimum	-0.003	-0.010
Maximum	0.010	0.011

12.0

15.0

20.0

25.0

30.0

40.0

45.0

50.0

Average

Minimum

Maximum

0.005

0.004

0.002

0.005

-0.002

-0.001

-0.003

-0.001

0.004

-0.003

0.010

0.002

0.005

0.002

0.001

-0.008

-0.007

-0.010

-0.009

0.001

-0.010

0.011

3852 Fortune Drive, Lafayette, IN 47905 USA Tel: 765-447-0535 • Fax: 765-448-4614 Web Site: www.radianresearch.com

Radian Research, Inc.

Power and Energy Measurement Specialists

Calibration Report

RM-11-07 Metronic Primary Watthour Standard

ModeQ	hour	60 Hertz
Date	16-Mar-01	
Serial Number	5216	

The following data was collected by an RS703A Syntron Automated Calibration System. The RS-703A Qhour Calibration is derived directly from the (NIST) Watthour Calibration by the use of ultra low distortion synthesis and digital delay. Uncertainty is .005% for Qhour. Calibration temperature is 23 degrees Centigrade. Test time is 15 seconds per point with a 5 second stabilization time between points. Timing is done by gating the pulse output. For for lagging power factors, current lags voltage. All readings are in percent error. RM-11 Qhour accuracy is +/-.05% (worst case). The RS-703A has a (10) times greater accuracy in Qhour.

	120	120	240	240	480	480	600	600
-	60°Lag	Unity	60°Lag	Unity	60°Lag	Unity	60°Lag	Unity
Amps	0.007	0.000	0.007	0.007	0.007	0.000	0.004	0.000
0.25	-0.007	0.008	-0.007	0.007	-0.007	0.008	-0.004	0.009
0.5	-0.010	0.004	-0.008	0.000	-0.011	0.002	-0.008	0.001
1.0	-0.008	0.009	-0.008	0.005	-0.007	0.004	-0.005	0.005
2.0	-0.008	0.003	-0.010	0.000	-0.011	-0.001	-0.010	0.001
2.5	-0.008	0.003	-0.009	0.002	-0.010	0.000	-0.009	0.003
3.0	-0.007	0.007	-0.009	0.003	-0.009	0.001	-0.008	0.003
5.0	-0.006	0.007	-0.007	0.004	-0.008	0.006	-0.006	0.005
10.0	-0.009	0.002	-0.010	-0.001	-0.010	0.000	-0.008	0.000
12.0	-0.008	0.003	-0.010	0.000	-0.009	0.002	-0.006	0.003
15.0	-0.007	0.005	-0.009	0.004	-0.009	0.003	-0.007	0.003
20.0	-0.009	0.005	-0.009	0.000	-0.008	0.003	-0.007	0.005
25.0	-0.010	0.001	-0.008	0.006	-0.007	0.002	-0.006	0.005
30.0	-0.013	-0.004	-0.012	-0.006	-0.013	-0.003	-0.009	-0.001
40.0	-0.012	-0.007	-0.013	-0.004	-0.011	-0.003	-0.010	0.000
45.0	-0.012	-0.006	-0.012	-0.006	-0.011	-0.007	-0.010	0.000
50.0	-0.014	-0.007	-0.012	-0.006	-0.010	-0.001	-0.007	0.001
Average	-0.009	0.002	-0.010	0.001	-0.009	0.001	-0.008	0.003
Minimum	-0.014	-0.007	-0.013	-0.006	-0.013	-0.007	-0.010	-0.001
Maximum	-0.006	0.009	-0.007	0.007	-0.007	0.008	-0.004	0.009

Voltage & Phase Angle

	60°Lag	Unity
Average	-0.009	0.002
Minimum	-0.014	-0.007
Maximum	-0.004	0.009

3852 Fortune Drive, Lafayette, IN 47905 USA Tel: 765-447-0535 • Fax: 765-448-4614 Web Site: www.radianresearch.com

Page 4 of 4